Theory of Extrasolar Giant Planet Transits

Abstract
We present a synthesis of physical effects influencing the observed light curve of an extrasolar giant planet (EGP) transiting its host star. The synthesis includes a treatment of Rayleigh scattering, cloud scattering, refraction, and molecular absorption of starlight in the EGP atmosphere. Of these effects, molecular absorption dominates in determining the transit-derived radius R for planetary orbital radii less than a few AU. Using a generic model for the atmosphere of EGP HD 209458b, we perform a fit to the best available transit light-curve data and infer that this planet has a radius at a pressure of 1 bar, R1, equal to 94,430 km, with an uncertainty of ~500 km arising from plausible uncertainties in the atmospheric temperature profile. We predict that R will be a function of wavelength of observation, with a robust prediction of at least ±1% variations at infrared wavelengths where H2O opacity in the high EGP atmosphere dominates.