Geometry and curvature of diffeomorphism groups with $H^1$ metric and mean hydrodynamics
Preprint
- 15 July 1998
Abstract
Recently, Holm, Marsden, and Ratiu [1998] have derived a new model for the mean motion of an ideal fluid in Euclidean space given by the equation $\dot{V}(t) + \nabla_{U(t)} V(t) - \alpha^2 [\nabla U(t)]^t \cdot \triangle U(t) = -\text{grad} p(t)$ where $\text{div} U=0$, and $V = (1- \alpha^2 \triangle)U$. In this model, the momentum $V$ is transported by the velocity $U$, with the effect that nonlinear interaction between modes corresponding to length scales smaller than $\alpha$ is negligible. We generalize this equation to the setting of an $n$ dimensional compact Riemannian manifold. The resulting equation is the Euler-Poincar\'{e} equation associated with the geodesic flow of the $H^1$ right invariant metric on ${\mathcal D}^s_\mu$, the group of volume preserving Hilbert diffeomorphisms of class $H^s$. We prove that the geodesic spray is continuously differentiable from $T{\mathcal D}_\mu^s(M)$ into $TT{\mathcal D}_\mu^s(M)$ so that a standard Picard iteration argument proves existence and uniqueness on a finite time interval. Our goal in this paper is to establish the foundations for Lagrangian stability analysis following Arnold [1966]. To do so, we use submanifold geometry, and prove that the weak curvature tensor of the right invariant $H^1$ metric on ${\mathcal D}^s_\mu$ is a bounded trilinear map in the $H^s$ topology, from which it follows that solutions to Jacobi's equation exist. Using such solutions, we are able to study the infinitesimal stability behavior of geodesics.
Keywords
All Related Versions
This publication has 0 references indexed in Scilit: