Local Unfolding and the Stepwise Loss of the Functional Properties of Tubulin

Abstract
Tubulin exhibits a number of characteristic functions that can be used to identify it. They include the ability to polymerize to microtubules, GTPase activity, and the binding of numerous antimitotic drugs and fluorophores. These functions can be differentially modified by low (0.1-1.0M) urea concentrations, and such urea-induced modifications are stable over time periods of minutes to hours. These intermediate states suggest the existence of restricted regions in the protein each of which is associated with a function and its own urea sensitivity. In order of decreasing sensitivity to urea these effects are decreased rate of polymerization of tubulin to microtubules > decreased extent of polymerization approximately decreased GTPase activity > enhanced fluorescence of a rapidly binding analogue of colchicine-MTPT [2-methoxy-5-(2',3',4'-trimethoxyphenyl)tropone] approximately decreased proteolysis by trypsin (after alpha Arg339) and by chymotrypsin (after beta Tyr281) > enhanced fluorescence of 1-anilino-8-naphthalenesulfonic acid (ANS). Additional evidence for the independent behavior of the restricted regions stems from the markedly different time dependence of the response to urea. These low urea concentrations do not induce significant changes in tryptophan fluorescence, suggesting that the observed effects are due to local unfolding. At higher urea concentrations (2-4 M), the enhanced fluorescence of the ligands is abolished; MTPT fluorescence decreases at lower urea concentrations than ANS fluorescence. Moreover, tubulin becomes highly susceptible to proteolysis at multiple sites, and tryptophan emission shows a red-shift, as expected. Multistep unfolding in response to denaturants has been reported for some other proteins. Tubulin appears to be an extreme example of such local responses that proceed under milder conditions than the global transition to the unfolded state.

This publication has 0 references indexed in Scilit: