The Human Epidermal Growth Factor Receptor Contains a Juxtamembrane Calmodulin-Binding Site

Abstract
A ligand-insensitive form of the human epidermal growth factor receptor (EGFR) was enriched by Ca2+-dependent calmodulin-affinity chromatography purification. The basic amphiphilic segment Arg645-Arg-Arg-His-Ile-Val-Arg-Lys-Arg-Thr654-Leu-Arg-Arg-Leu-Leu-Gln660, located within the cytoplasmic juxtamembrane domain of this receptor, was purified as a fusion protein with glutathione S-transferase and shown to bind calmodulin in a Ca2+-dependent manner. An apparent dissociation constant of 0.4 μM calmodulin (Kd(CaM)) and an apparent affinity constant of 0.5 μM free Ca2+ (Ka(Ca)) were measured for this binding process. Binding of calmodulin at the juxtamembrane site prevented the phosphorylation of residue Thr-654 by protein kinase C, and an apparent inhibition constant of 0.5−1 μM calmodulin (Ki(CaM)) was determined. Conversely, phosphorylation of this site by protein kinase C prevented its subsequent interaction with calmodulin. We therefore propose that cross talk between signaling pathways mediated by calmodulin and protein kinase C occurs at the juxtamembrane domain of the EGFR. This calmodulin-binding sequence is highly conserved among protein tyrosine kinases of the vertebrate EGFR family.