Disulfide cross-linked protein represents a significant fraction of ALS-associated Cu, Zn-superoxide dismutase aggregates in spinal cords of model mice
- 2 May 2006
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 103 (18) , 7148-7153
- https://doi.org/10.1073/pnas.0602048103
Abstract
Point mutations in Cu, Zn-superoxide dismutase (SOD1) cause a familial form of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Aggregates of mutant SOD1 proteins are observed in histopathology and are invoked in several proposed mechanisms for motor neuronal death; however, the significant stability and activity of the mature mutant proteins are not readily explained in such models. Recent biochemical studies suggest that it is the immature disulfide-reduced forms of the familial ALS mutant SOD1 proteins that play a critical role; these forms tend to misfold, oligomerize, and readily undergo incorrect disulfide formation upon mild oxidative stress in vitro . Here we provide physiological support for this mechanism of aggregate formation and show that a significant fraction of the insoluble SOD1 aggregates in spinal cord of the ALS-model transgenic mice contain multimers cross-linked via intermolecular disulfide bonds. These insoluble disulfide-linked SOD1 multimers are found only in the spinal cord of symptomatic transgenic animals, are not observed in unafflicted tissue such as brain cortex and liver, and can incorporate WT SOD1 protein. The findings provide a biochemical basis for a pathological hallmark of this disease; namely, incorrect disulfide cross-linking of the immature, misfolded mutant proteins leads to insoluble aggregates.Keywords
This publication has 47 references indexed in Scilit:
- Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondriaProceedings of the National Academy of Sciences, 2006
- Mapping superoxide dismutase 1 domains of non‐native interaction: roles of intra‐ and intermolecular disulfide bonding in aggregationJournal of Neurochemistry, 2006
- The Unusually Stable Quaternary Structure of Human Cu,Zn-Superoxide Dismutase 1 Is Controlled by Both Metal Occupancy and Disulfide StatusJournal of Biological Chemistry, 2004
- Bicarbonate-dependent Peroxidase Activity of Human Cu,Zn-Superoxide Dismutase Induces Covalent Aggregation of ProteinJournal of Biological Chemistry, 2003
- Impairment of the Ubiquitin-Proteasome System by Protein AggregationScience, 2001
- Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injuryNature Genetics, 1996
- Neuronal Growth and Death: Order and Disorder in the AxoplasmCell, 1996
- Conserved Patterns in the Cu,Zn Superoxide Dismutase FamilyJournal of Molecular Biology, 1994
- Amyotrophic Lateral Ssclerosis and Structural Defects in Cu,Zn Superoxide DismutaseScience, 1993
- Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosisNature, 1993