Review: Plasticity of the Visual Cortex after Injury: What’s Different about the Young Brain?

Abstract
The repercussions of localized injury of the cerebral cortex in young brains differ from the repercussions triggered by equivalent damage of the mature brain. In the young brain, some distant neurons are more vulnerable to the lesion, whereas others survive and expand their projections to bypass damaged and degenerated structures. The net result is sparing of neural processing and behaviors. This article summarizes both the modifications in visual pathways resulting from visual cortex lesions sustained early in life and the neural and behavioral processes that are spared or permanently impaired. Experiments using reversible deactivation show that at least two highly localizable functions of normal cerebral cortex are remapped across the cortical surface as a result of an early lesion of the primary visual cortex. Moreover, the redistributions have spread the essential neural operations underlying orienting behavior from the visual parietal cortex to a normally functionally distinct type of cortex in the visual temporal system, and in the opposite direction for complex-pattern recognition. Similar functional reorganizations may underlie sparing of neural processes and behavior following early lesions in other cerebral systems, and these other systems may respond well to emerging therapeutic strategies designed to enhance the sparing of functions.