Abstract
It has been argued that the no-slip boundary condition, applicable when a viscous fluid flows over a solid surface, may be an inevitable consequence of the fact that all such surfaces are, in practice, rough on a microscopic scale: the energy lost through viscous dissipation as a fluid passes over and around these irregularities is sufficient to ensure that it is effectively brought to rest. The present paper analyses the flow over a particularly simple model of such a rough wall to support these physical ideas.

This publication has 5 references indexed in Scilit: