Four-dimensional M-theory and supersymmetry breaking

Abstract
We investigate compactifications of M-theory from $11\to 5\to 4$ dimensions and discuss geometrical properties of 4-d moduli fields related to the structure of 5-d theory. We study supersymmetry breaking by compactification of the fifth dimension and find that an universal superpotential is generated for the axion-dilaton superfield $S$. The resulting theory has a vacuum with $=1$, zero cosmological constant and a gravitino mass depending on the fifth radius as $m_{3/2} \sim R_5^{-2}/M_{Pl}$. We discuss phenomenological aspects of this scenario, mainly the string unification and the decompactification problem.

This publication has 0 references indexed in Scilit: