Effect of calcium on transport characteristics of cultured proximal renal cells

Abstract
We examined the effects of acute changes in extracellular and intracellular calcium on transport processes in primary culture of proximal rabbit renal cells. A change in extracellular calcium from 0 to 3 mM inhibited amiloride-sensitive sodium uptake by 30%, and this effect was maximal at 1 mM calcium. Other polyvalent cations (Mn2+, Mg2+, La3+, and Ba2+) produced quantitatively similar inhibition of amiloride-sensitive sodium uptake compared with calcium. An increase in cytosolic calcium produced by calcium loading (20 mM) or by A23187 (20 microM) resulted in an inhibition of 25-40% of amiloride-sensitive sodium uptake. Moreover, quinidine (10(-4)M) and ruthenium red (3 microM), agents presumed to increase cytosolic calcium, inhibited amiloride-sensitive sodium uptake by 20-60%. Both these agents also inhibited sodium-dependent phosphate uptake by 20% but had no effect on ouabain-sensitive 86Rb+ uptake or on sodium-dependent alpha-methylglucoside uptake. Our data indicate that increases in extracellular calcium inhibit amiloride-sensitive sodium uptake and increases in cytosolic calcium inhibit sodium-dependent phosphate and amiloride-sensitive sodium uptakes. The effect of extracellular calcium may be due to charge screening and/or binding to the negatively charged plasma membrane or due to alterations in membrane fluidity.

This publication has 3 references indexed in Scilit: