Wave Dependence of Sea-Surface Wind Stress
- 1 May 1990
- journal article
- Published by American Meteorological Society in Journal of Physical Oceanography
- Vol. 20 (5) , 705-721
- https://doi.org/10.1175/1520-0485(1990)020<0705:wdossw>2.0.co;2
Abstract
Distribution of the wind stress over the oceans is usually estimated by using a bulk formula. It contains the squared 10-m wind speed multiplied by the drag coefficient, which has been assumed in many cases to be a weak function of the 10-m wind speed. Over land the important role of thermal stratification has been clearly recognized, but over the sea the influence of wind waves is less well documented. This paper presents evidence showing the likelihood that the influence of the wind waves can also be large. Charnock proposed an expression for the marine atmospheric boundary layer roughness parameter, z0, which depended only on the wind friction velocity, u☆ and the acceleration of gravity, g. Toba and Koga have recently proposed an alternative expression for flow over growing wind waves, which are in local equilibrium with the wind, given by a form including the wind-wave spectral peak frequency explicity. The criterion for local equilibrium of the wave field with the wind is its consistency wi... Abstract Distribution of the wind stress over the oceans is usually estimated by using a bulk formula. It contains the squared 10-m wind speed multiplied by the drag coefficient, which has been assumed in many cases to be a weak function of the 10-m wind speed. Over land the important role of thermal stratification has been clearly recognized, but over the sea the influence of wind waves is less well documented. This paper presents evidence showing the likelihood that the influence of the wind waves can also be large. Charnock proposed an expression for the marine atmospheric boundary layer roughness parameter, z0, which depended only on the wind friction velocity, u☆ and the acceleration of gravity, g. Toba and Koga have recently proposed an alternative expression for flow over growing wind waves, which are in local equilibrium with the wind, given by a form including the wind-wave spectral peak frequency explicity. The criterion for local equilibrium of the wave field with the wind is its consistency wi...Keywords
This publication has 0 references indexed in Scilit: