Balance prosthesis based on micromechanical sensors using vibrotactile feedback of tilt
- 1 October 2001
- journal article
- research article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Biomedical Engineering
- Vol. 48 (10) , 1153-1161
- https://doi.org/10.1109/10.951518
Abstract
A prototype balance prosthesis has been made using miniature, high-performance inertial sensors to measure lateral head tilt and vibrotactile elements mounted on the body to display head tilt to the user. The device has been used to study the feasibility of providing artificial feedback of head tilt to reduce postural sway during quiet standing using six healthy subjects. Two vibrotactile display schemes were used: one in which the individual vibrating elements, called tactors, were placed on the shoulders (shoulder tactors); another in which columns of tactors were placed on the right and left sides of the trunk (side tactors). Root-mean-square head-tilt angle (Tilt) and center of pressure displacement (Sway) were measured for normal subjects standing in a semi-tandem Romberg position with eyes closed, under four conditions: no balance aids; shoulder tactors; side tactors; and light touch. Compared with no balance aids, the side tactors significantly reduced Tilt (35%) and Sway (33%). Shoulder tactors also significantly reduced Tilt (44%) and Sway (17%). Compared with tactors, light touch resulted in less Sway, but more Tilt. The results suggest that healthy normal subjects can reduce their lateral postural sway using head tilt information as provided by a vibrotactile display. Thus, further testing with balance-impaired subjects is now warranted.Keywords
This publication has 19 references indexed in Scilit:
- Performance of MEMS inertial sensorsPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2002
- Precision contact of the fingertip reduces postural sway of individuals with bilateral vestibular lossExperimental Brain Research, 1999
- Evidence for different types of mechanoreceptors from measurements of the psychophysical threshold for vibrations under different stimulation conditionsThe Journal of the Acoustical Society of America, 1988
- Multi-modal information processing for visual workload reliefErgonomics, 1980
- Subjective Detection Of Vertical Acceleration: A Velocity-Dependent Response?Acta Oto-Laryngologica, 1978
- Kinesthetic-Tactual Information Presentations-Inflight StudiesIEEE Transactions on Systems, Man, and Cybernetics, 1974
- A ``Critical'' Tracking Task for Manual Control ResearchIEEE Transactions on Human Factors in Electronics, 1966
- Spatial and Dynamic Aspects of Visual FixationIEEE Transactions on Biomedical Engineering, 1965
- Head, eye, body and limb movements from semicircular canal nervesExperimental Neurology, 1964
- The Mechanics of the Labyrinth OtolithsActa Oto-Laryngologica, 1950