The statistical performance of some instantaneous frequency estimators

Abstract
The authors examine the class of smoothed central finite difference (SCFD) instantaneous frequency (IF) estimators which are based on finite differencing of the phase of the analytic signal. These estimators are closely related to IF estimation via the (periodic) first moment, with respect to frequency of discrete time-frequency representations (TFRs) in L. Cohen's (1966) class. The authors determine the distribution of this class of estimators and establish a framework which allows the comparison of several other estimators such as the zero-crossing estimator and one based on linear regression on the signal phase. It is found that the regression IF estimator is biased and exhibits a large threshold for much of the frequency range. By replacing the linear convolution operation in the regression estimator with the appropriate convolution operation for circular data the authors obtain the parabolic SCFD (PSCFD) estimator, which is unbiased and has a frequency-independent variance, yet retains the optimal performance and simplicity of the original estimator.<>

This publication has 22 references indexed in Scilit: