Diets rich in saturated n-9 and n-3 fatty acids differentially affect the fatty acid composition of phospholipids and function of rat platelets

Abstract
The aim of the present study was to determine whether dietary intake of monounsaturated or long chain n-3 fatty acids could be effective in lowering platelet responsiveness through modulation of platelet phospholipid composition. Rats were fed diets containing 20% fat with equal cholesterol and 13a-tocopherol contents. These diets were supplemented with saturated, oleic or n-3 fatty acids, n-3 polyunsaturated fatty acids being added either pure, as eicosapentaenoic and docosahexaenoic ethyl esters, or as MaxEPA oil. Dietary n-3 fatty acids did not affect the oxidation status of plasma lipids. Oleic acid- and saturated fatty acid-rich diets led to similar enrichment of platelet phospholipids in arachidonic acid and to comparable thromboxane A(2) generation on stimulation with collagen or thrombin. Platelets of n-3-fed groups were differently enriched in eicosapentaenoic and docosahexaenoic acids at the expense of arachidonic acid. These groups displayed similar thromboxane A(2) production, although levels were lower than those for groups fed with oleic- or saturated fatty acid-rich diets. Only the MaxEPA diet led to a reduction in platelet reactivity, measurable as a small decrease in the aggregation induced by collagen. This diet was also responsible for a high cholesteroUphospholipid ratio and low a-tocopherol content in platelets. Overall results indicated that (i) only MaxEPA reduced platelet reactivity and (ii) this effect was moderate and apparently unrelated to platelet arachidonic acid content, membrane cholesterol to phospholipid ratio or thromboxane A(2) production.