Roles of distinct glutamate receptors in induction of anti‐Hebbian long‐term potentiation
- 15 March 2008
- journal article
- review article
- Published by Wiley in The Journal of Physiology
- Vol. 586 (6) , 1481-1486
- https://doi.org/10.1113/jphysiol.2007.148064
Abstract
Many glutamatergic synapses on interneurons involved in feedback inhibition in the CA1 region of the hippocampus exhibit an unusual form of long-term potentiation (LTP) that is induced only if presynaptic glutamate release occurs when the postsynaptic membrane potential is relatively hyperpolarized. We have named this phenomenon 'anti-Hebbian' LTP because it is prevented by postsynaptic depolarization during afferent activity, and hence its induction requirements are opposite to those of Hebbian NMDA receptor-dependent LTP. This symposium report addresses the roles of distinct glutamate receptors in the induction of anti-Hebbian LTP. Inwardly rectifying Ca(2+)-permeable AMPA receptors mediate fast glutamatergic signalling at synapses that exhibit this form of LTP, and they are highly likely to mediate the instructive signal that triggers the cascade leading to synapse strengthening. NMDA receptors, on the other hand, play no role, nor do they contribute substantially to synaptic transmission at synapses that exhibit anti-Hebbian LTP. Both kainate and group I metabotropic glutamate receptors are abundant in at least some interneurons in the feedback inhibitory circuit. Delineating the roles of kainate receptors has been hampered by sub-optimal pharmacological tools. As for group I metabotropic glutamate receptors, their role in anti-Hebbian LTP is permissive at the very least in some interneuron types, although an instructive role has been suggested in other forms of activity-dependent plasticity.Keywords
This publication has 42 references indexed in Scilit:
- Stargazin attenuates intracellular polyamine block of calcium-permeable AMPA receptorsNature Neuroscience, 2007
- Synaptic Kainate Receptors Tune Oriens-Lacunosum Moleculare Interneurons to Operate at Theta FrequencyJournal of Neuroscience, 2007
- Anti-Hebbian Long-Term Potentiation in the Hippocampal Feedback Inhibitory CircuitScience, 2007
- mGluR1/5 subtype‐specific calcium signalling and induction of long‐term potentiation in rat hippocampal oriens/alveus interneuronesThe Journal of Physiology, 2006
- Differential Regulation of Metabotropic Glutamate Receptor- and AMPA Receptor-Mediated Dendritic Ca2+Signals by Presynaptic and Postsynaptic Activity in Hippocampal InterneuronsJournal of Neuroscience, 2005
- Presynaptic Kainate Receptors in the HippocampusNeuron, 2001
- Long‐term potentiation of GABAergic synaptic transmission in neonatal rat hippocampusThe Journal of Physiology, 1999
- Facilitation of currents through rat Ca2+‐permeable AMPA receptor channels by activity‐dependent relief from polyamine blockThe Journal of Physiology, 1998
- Synaptic Input of Horizontal Interneurons in Stratum Oriens of the Hippocampal CA1 Subfield: Structural Basis of Feed‐back ActivationEuropean Journal of Neuroscience, 1995
- The role of Ca2+ entry via synaptically activated NMDA receptors in the induction of long-term potentiationNeuron, 1993