Computer Simulation of High-Power Ion Beam Generation Using the Plasma Erosion Opening Switch and Microsecond Store Systems

Abstract
This paper deals with computer simulation of plasma erosion opening switch (PEOS) operation in the context of short-pulse high-power ion beam (HPIB) generation in microsecond store systems. The scaling of PEOS parameters and ion diode characteristics with various operating conditions was determined. The simulations showed the best PEOS characteristics for a hydrogen plasma (i.e., the lowest mass) with a high flow velocity and low density, although for some applications a plasma with A/Z > 1 may be preferable. It was shown that the efficiency of HPIB generation in the diode depends on its location relative to the PEOS, the time delay of anode plasma formation, the use of a spiral electrode in the PEOS region, and the use of an arrangement involving an ion return current bypass through the PEOS region. The optimization of the PEOS and ion diode with coaxial configurations and 100 kJ stored in the 600-kV Marx yielded a 16-percent overall efficiency HPIB generation in the diode, with a diode voltage and power of 4.2 MV and 0.42 TW, respectively.