The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway
- 10 March 2010
- journal article
- Published by The Royal Society in Proceedings Of The Royal Society B-Biological Sciences
- Vol. 277 (1690) , 1963-1969
- https://doi.org/10.1098/rspb.2009.1797
Abstract
The evolutionary histories of complex traits are complicated because such traits are comprised of multiple integrated and interacting components, which may have different individual histories. Phylogenetic studies of complex trait evolution often do not take this into account, instead focusing only on the history of whole, integrated traits; for example, mapping eyes as simply present or absent through history. Using the biochemistry of animal vision as a model, we demonstrate how investigating the individual components of complex systems can aid in elucidating both the origins and diversification of such systems. Opsin-based phototransduction underlies all visual phenotypes in animals, using complex protein cascades that translate light information into changes in cyclic nucleotide gated (CNG) or canonical transient receptor potential (TRPC) ion-channel activity. Here we show that CNG ion channels play a role in cnidarian phototransduction. Transcripts of a CNG ion channel co-localize with opsin in specific cell types of the eyeless cnidarianHydra magnipapillata. Further, the CNG inhibitorcis-diltiazem ablates a stereotypical photoresponse in the hydra. Our findings in the Cnidaria, the only non-bilaterian lineage to possess functional opsins, allow us to trace the history of CNG-based photosensitivity to the very origin of animal phototransduction. Our general analytical approach, based on explicit phylogenetic analysis of individual components, contrasts the deep evolutionary history of CNG-based phototransduction, today used in vertebrate vision, with the more recent assembly of TRPC-based systems that are common to protostome (e.g. fly and mollusc) vision.Keywords
This publication has 47 references indexed in Scilit:
- Phylogenomics Revives Traditional Views on Deep Animal RelationshipsCurrent Biology, 2009
- Jellyfish vision starts with cAMP signaling mediated by opsin-G s cascadeProceedings of the National Academy of Sciences, 2008
- Assembly of the cnidarian camera-type eye from vertebrate-like componentsProceedings of the National Academy of Sciences, 2008
- The Origins of Novel Protein Interactions during Animal Opsin EvolutionPLOS ONE, 2007
- ProtTest: selection of best-fit models of protein evolutionBioinformatics, 2005
- Evolution of Key Cell Signaling and Adhesion Protein Families Predates Animal OriginsScience, 2003
- T-coffee: a novel method for fast and accurate multiple sequence alignment 1 1Edited by J. ThorntonJournal of Molecular Biology, 2000
- Coelenterate organsMarine and Freshwater Behaviour and Physiology, 1999
- Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucleic Acids Research, 1997
- On the Functions and Mode of Action of the Nematocysts of Hydra.Journal of Zoology, 1947