Viscoelastic effects in relaxation processes of concentration fluctuations in dynamically asymmetric polymer blends

Abstract
Relaxation processes of the concentration fluctuations induced by a rapid pressure change were investigated for a dynamically asymmetric polymer blend [deuterated polybutadiene (DPB)/polyisoprene (PI)] with a composition of 50-50 by weight by using time-resolved small-angle neutron scattering. The pressure change was carried out inside the single-phase of the blend with the cell designed for polymeric systems under high pressure and temperature. Time change in the scattered intensity distribution with wave number (q) during the relaxation processes was found to be approximated by Cahn-Hilliard-Cook linearized theory. The theoretical analysis yielded the q dependence of Onsager kinetic coefficient that is characterized by the q2 dependence at qξve>1 with the characteristic length ξve (with ξve being the viscoelastic length) being much larger than radius of gyration of DPB or PI. The estimated ξve agrees well with that calculated using the Doi and Onuki theory that takes into account the viscoelastic effects arising from the dynamical asymmetry between the component polymers in the relaxation of concentration fluctuations.