SOLVENT EFFECTS IN THE NUCLEAR MAGNETIC RESONANCE SPECTRA OF BENZALMALONONITRILES

Abstract
The nuclear magnetic resonance spectra of a series of substituted benzalmalononitriles were examined in various solvents. The chemical shifts for the olefinic protons are susceptible to large solvent effects which are interpreted as arising from association of a solvent molecule with the olefinic proton (acetone) or a site in its vicinity (benzene). With acetone this leads to a downfield shift from values observed in chloroform. In benzene solution the association produces increased shielding and is present in addition to a second solvation complex, the arrangement of which is governed by the substituent. The difference in behavior of the ethylenic proton in benzalmalononitriles from the formyl proton in benzaldehyde is ascribed to its more highly acidic nature.