Dish-Stirling Systems: An Overview of Development and Status

Abstract
Dish-Stirling systems have demonstrated the highest efficiency of any solar power generation system by converting nearly 30% of direct-normal incident solar radiation into electricity after accounting for parasitic power losses[1]. These high-performance, solar power systems have been in development for two decades with the primary focus in recent years on reducing the capital and operating costs of systems. Even though the systems currently cost about $10,000 US/kW installed, major cost reduction will occur with mass production and further development of the systems. Substantial progress has been made to improve reliability thereby reducing the operating and maintenance costs of the systems. As capital costs drop to about $3000 US/kW, promising market opportunities appear to be developing in green power and distributed generation markets in the southwestern United States and in Europe. In this paper, we review the current status of four Dish-Stirling systems that are being developed for commercial markets and present system specifications and review system performance and cost data. We also review the economics, capital cost, operating and maintenance costs, and the emerging markets for Dish-Stirling systems.

This publication has 15 references indexed in Scilit: