Molecular Determinants of Recognition for the Intestinal Peptide Carrier

Abstract
Computer-aided conformational analysis was used to characterize the pharmacophore for the intestinal peptide carrier. The active analog approach to pharmacophore building was applied as implemented in the SYBYL software package. Conformational analysis and MOPAC calculations were used to determine the lowest energy conformation of carrier substrates, as well as the conformations of compounds that displayed a common pharmacophoric geometry (i.e., inhibitors and inactive structural analogs). A pharmacophore map was calculated, and based on structural mutualities and functional topology, three substrate groups were suggested: compounds that bind to the transporter and are transferred across the membrane; compounds that show affinity for the peptide carrier (i.e., known to inhibit transport of substrates) but are not transferred across the membrane; and compounds that contain the pharmacophoric geometry but show no affinity for the carrier. Affinity for the peptide transporter can be diminished or abolished in either of three ways: esterification of the free carboxylic acid moiety; introduction of a second negative group; and intramolecular steric hindrance of the free carboxylic acid by either side chains with a positively charged nitrogen function or groups capable of hydrogen bond formation.

This publication has 31 references indexed in Scilit: