Abstract
The demand in optical networking for photonic components that meet performance criteria as well as economic requirements has opened the door for novel technologies capable of high-yield low-cost manufacturing while delivering high performance and enabling unique functions. The most promising new technologies are based on integrated optics. Integration permits the parallel production of complex multi-function photonic circuits on a planar substrate. Polymeric materials are particularly attractive in integrated optics because of their ability to be processed rapidly, cost-effectively, and with high yields; because they enable power-efficient dynamic componentry through thermo-optic and electro-optic actuation; and because they allow to form compact optical circuits by offering large refractive index contrasts (index difference values between waveguide core and cladding). We compare the properties of optical polymers with those of other material systems utilized in integrated optics. We present an up-to-date snapshot of the global effort in optical polymer material development. We describe the criteria that optical polymers need to meet in order to be viable for commercial deployment. We review the state of the art in polymeric integrated optical components including switches, attenuators, filters, polarization controllers, modulators, lasers, amplifiers, and detectors. We further emphasize the practicality aspect by conveying which technologies have been productized successfully, which ones are ready for commercial introduction, and which ones are still under development in research laboratories.

This publication has 0 references indexed in Scilit: