Respiratory burst of rabbit peritoneal neutrophils
Open Access
- 1 November 1990
- journal article
- research article
- Published by Wiley in European Journal of Biochemistry
- Vol. 194 (1) , 301-308
- https://doi.org/10.1111/j.1432-1033.1990.tb19457.x
Abstract
Superoxide (.O2-) production by the NADPH oxidase of a membrane fraction derived from rabbit peritoneal neutrophils activated by 4.beta.-phorbol 12-myristate 13-acetate (PMA) was studied at 25.degree. C under different conditions, and measured by the superoxide dismutase inhibitable reduction of cytochrome c. Whereas PMA-activated rabbit neutrophils incubated in a glucose-supplemented medium exhibited a substantial rate of production of .O2-, the membranes prepared by sonication of the activated neutrophils were virtually unable to generate .O2- in the presence of NADPH. Instead, they exhibited an NADPH-dependent diaphorase activity, measured by the superoxide-dismutase-insensitive reduction of cytochrome c. Upon addition of arachidonic acid, which is known to elicit oxidase activation, the NADPH diaphorase activity of the rabbit neutrophil membranes vanished and was stoichiometrically replaced by an NADPH oxidase activity. The emerging oxidase activity was fully sensitive to iodonium biphenyl, a potent inhibitor of the respiratory burst, whereas the diaphorase activity was not affected. Addition of 0.1% Triton X-100 or an excess of arachidonic acid, acting as detergent, resulted in the reappearance of the diaphorase activity at the expense of the oxidase activity. These results indicate that the diaphorase-oxidase transition is reversible. When the rabbit neutrophil membranes were supplemented with rabbit neutrophil cytosol, guanosine 5''-[.gamma.-thio]triphosphate and Mg2+, in addition to arachidonic acid, not only the NADPH diaphorase activity disappeared, but the emerging NADPH oxidase activity was markedly enhanced (about 10 times compared to that of membranes treated with arachidonic acid alone). The diaphorase-oxidase transition was accompanied by a 10-fold increase in the Km for NADPH, suggesting a change of conformation propagated to the NADPH-binding site during the transition. The treatment of PMA-activated rabbit neutrophils with cross-linking reagents, like glutaraldehyde or 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide, prevented the loss of the PMA-elicited oxidase activity upon disruption of the cells by sonication, suggesting that the interactions between the components of the oxidase complex are stabilized by cross-linking.This publication has 38 references indexed in Scilit:
- Parameters of activation of the membrane-bound O2• generating oxidase from bovine neutrophils in a cell-free systemBiochemical and Biophysical Research Communications, 1989
- Activation of bovine neutrophil oxidase in a cell free system. GTP-dependent formation of a complex between a cytosolic factor and a membrane proteinBiochemical and Biophysical Research Communications, 1988
- Activation of the superoxide radical generating oxidase in plasma membrane from bovine polymorphonuclear neutrophils by arachidonic acid, a cytosolic factor of protein nature, and nonhydrolyzable analogs of GTPBiochemistry, 1988
- Chronic granulomatous disease—Pieces of a cellular and molecular puzzleBlood Reviews, 1987
- Porcine polymorphonuclear leukocyte NADPH-cytochrome c reductase generates superoxide in the presence of cytochrome b559 and phospholipidBiochemical and Biophysical Research Communications, 1987
- The O2−-forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and functionBiochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics, 1986
- Purification and properties of a superoxide-generating oxidase from bovine polymorphonuclear neutrophilsBiochemistry, 1985
- The respiratory burst of bovine neutrophilisEuropean Journal of Biochemistry, 1985
- Detection of NADPH diaphorase activity associated with human neutrophil NADPH‐O2 oxidoreductase activityFEBS Letters, 1985
- A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnalytical Biochemistry, 1976