Abstract
Absfruct- The emerging high-speed networks, notably the ATM-based Broadband ISDN, are expected to integrate through statistical multiplexing large numbers of traffic sources having a broad range of burstiness characteristics. A prime instrument for controlling congestion in the network is admission control, which limits calls and guarantees a grade of service determined by delay and loss probability in the multiplexer. We show, for general Markovian traffic sources, that it is possible to assign a notional effective bandwidth to each source which is an explicitly identi- fied, simply computed quantity with provably correct properties in the natural asymptotic regime of small loss probabilities. It is the maximal real eigenvalue of a matrix which is directly obtained from the source characteristics and the admission criterion, and for several sources it is simply additive. We consider both fluid and point process models and obtain parallel results. Numerical results show that the acceptance set for heterogeneous classes of sources is closely approximated and conservatively bounded by the set obtained from the effective bandwidth approximation. Also, the bandwidth-reducing properties of the Leaky Bucket regulator are exhibited numerically. For a source model of video teleconferencing due to Heyman et al. with a large number of states, the effective bandwidth is easily computed. The equivalent bandwidth is bounded by the peak and mean source rates, and is monotonic and concave with respect to a parameter of the admission criterion. Coupling of state transitions of two related asynchronous sources always increases their effective bandwidth.

This publication has 23 references indexed in Scilit: