Dielectric function of Si-SiO2 and Si-Si3N4 mixtures
- 1 July 1979
- journal article
- research article
- Published by AIP Publishing in Journal of Applied Physics
- Vol. 50 (7) , 4928-4935
- https://doi.org/10.1063/1.325596
Abstract
Expressions for the dielectric function of Si‐SiO2 and Si‐Si3N4 composites are obtained by combining the Si‐centered tetrahedral model of Philipp with composite‐media theory. The similarity between dielectric‐function spectra of a‐Si and Si3N4, with scaling parameters related by the plasma sum rule and the dielectric theory of Phillips and Van Vechten is used to obtain the polarization response function for the bond part of a given tetrahedron. By treating the N and O contributions on an equal basis with Si, reasonable agreement to existing spectra is obtained for these materials over an energy range of 0–8 eV.This publication has 29 references indexed in Scilit:
- Optical properties of ultrafine gold particlesPhysical Review B, 1977
- Chemical bond and related properties of SiO2 I. character of the chemical bondPhysica Status Solidi (a), 1977
- Chemisorption of atomic hydrogen on the silicon (111) 7 × 7 surfacePhysical Review B, 1975
- Generalized effective-medium approach to the conductivity of an inhomogeneous materialPhysical Review B, 1975
- Refractive-Index Behavior of Amorphous Semiconductors and GlassesPhysical Review B, 1973
- Optical Properties of Silicon NitrideJournal of the Electrochemical Society, 1973
- Calculation of Local Effective Fields: Optical Spectrum of DiamondPhysical Review Letters, 1972
- Calculation of the Optical Properties of AmorphousMaterialsPhysical Review B, 1971
- Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen SubstanzenAnnalen der Physik, 1935
- Refractive dispersion of organic compounds. V-Oxygenated derivatives of cyclohexane the inadequacy of the Ketteler-Helmholtz equationProceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1934