Two-phase model of O 2 (1-delta) production with application to rotating disk generators
- 6 June 1993
- proceedings article
- Published by SPIE-Intl Soc Optical Eng
- Vol. 1871, 203-229
- https://doi.org/10.1117/12.145216
Abstract
A model for the production of singlet delta oxygen, O2(1(Delta) ), following the reaction of gaseous chlorine, Cl2, with liquid basic hydrogen peroxide, BHP, is described. The model includes diffusion of the Cl2 gas into the liquid, diffusion of the hydroperoxy anions, HO-2, to the surface, reaction of the Cl2 with the HO-2 ions at a finite-rate, heterogeneous deactivation of the O2(1(Delta) ) within the liquid, and homogeneous deactivation of the O2(1(Delta) ) molecules in the gas. Transport equations are written for the chlorine, oxygen, and HO-2 species concentrations in the liquid while ordinary rate equations are written for the chlorine and oxygen species in the gas. The appropriate initial and boundary conditions for these coupled, nonlinear equations are discussed. Several assumptions and approximations, justified because of the existence of several widely disparate temporal and spatial scales associated with the convection, diffusion, and reaction of Cl2 with BHP, are discussed and applied to simplify these coupled equations.Keywords
This publication has 0 references indexed in Scilit: