Restrictions of Normal Operators, Padé Approximation and Autoregressive Time Series
- 1 July 1984
- journal article
- Published by Society for Industrial & Applied Mathematics (SIAM) in SIAM Journal on Mathematical Analysis
- Vol. 15 (4) , 753-767
- https://doi.org/10.1137/0515059
Abstract
This work studies restrictions of normal operators on a Hilbert space to so-called Krylov subspaces with special attention to selfadjoint and unitary operators. It is shown that the characteristic polynomials of these restrictions are orthogonal polynomials and furthermore are intimately related to denominators of Padé approximations to certain moment generating functions. These relations are seen to unify certain aspects of Lanczos methods for eigenvalue approximations of selfadjoint operators and autoregressive modeling of time series.Keywords
This publication has 19 references indexed in Scilit:
- Fast solution of toeplitz systems of equations and computation of Padé approximantsPublished by Elsevier ,2004
- The numerical calculation of Padé approximantsPublished by Springer Nature ,1979
- A Property of Euclid’s Algorithm and an Application to Padé ApproximationSIAM Journal on Applied Mathematics, 1978
- LAURENT, FOURIER, AND CHEBYSHEV-PADÉ TABLESPublished by Elsevier ,1977
- The Padé Table and Its Relation to Certain Algorithms of Numerical AnalysisSIAM Review, 1972
- The Toeplitz-Hausdorff Theorem ExplainedCanadian Mathematical Bulletin, 1971
- An Algorithm for the Inversion of Finite Toeplitz MatricesJournal of the Society for Industrial and Applied Mathematics, 1964
- Moments and characteristic rootsNumerische Mathematik, 1960
- Über die Lage der Nullstellen von Polynomen, die aus Minimumforderungen gewisser Art entspringenMathematische Annalen, 1922
- Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik.Journal für die reine und angewandte Mathematik (Crelles Journal), 1909