HIV-Specific Probabilistic Models of Protein Evolution
Open Access
- 6 June 2007
- journal article
- research article
- Published by Public Library of Science (PLoS) in PLOS ONE
- Vol. 2 (6) , e503
- https://doi.org/10.1371/journal.pone.0000503
Abstract
Comparative sequence analyses, including such fundamental bioinformatics techniques as similarity searching, sequence alignment and phylogenetic inference, have become a mainstay for researchers studying type 1 Human Immunodeficiency Virus (HIV-1) genome structure and evolution. Implicit in comparative analyses is an underlying model of evolution, and the chosen model can significantly affect the results. In general, evolutionary models describe the probabilities of replacing one amino acid character with another over a period of time. Most widely used evolutionary models for protein sequences have been derived from curated alignments of hundreds of proteins, usually based on mammalian genomes. It is unclear to what extent these empirical models are generalizable to a very different organism, such as HIV-1–the most extensively sequenced organism in existence. We developed a maximum likelihood model fitting procedure to a collection of HIV-1 alignments sampled from different viral genes, and inferred two empirical substitution models, suitable for describing between-and within-host evolution. Our procedure pools the information from multiple sequence alignments, and provided software implementation can be run efficiently in parallel on a computer cluster. We describe how the inferred substitution models can be used to generate scoring matrices suitable for alignment and similarity searches. Our models had a consistently superior fit relative to the best existing models and to parameter-rich data-driven models when benchmarked on independent HIV-1 alignments, demonstrating evolutionary biases in amino-acid substitution that are unique to HIV, and that are not captured by the existing models. The scoring matrices derived from the models showed a marked difference from common amino-acid scoring matrices. The use of an appropriate evolutionary model recovered a known viral transmission history, whereas a poorly chosen model introduced phylogenetic error. We argue that our model derivation procedure is immediately applicable to other organisms with extensive sequence data available, such as Hepatitis C and Influenza A viruses.Keywords
This publication has 39 references indexed in Scilit:
- Evolutionary Model Selection with a Genetic Algorithm: A Case Study Using Stem RNAMolecular Biology and Evolution, 2006
- Selection on the Human Immunodeficiency Virus Type 1 Proteome following Primary InfectionJournal of Virology, 2006
- Adaptation to Different Human Populations by HIV-1 Revealed by Codon-Based AnalysesPLoS Computational Biology, 2006
- A Universal Evolutionary Index for Amino Acid ChangesMolecular Biology and Evolution, 2004
- Model Selection and Multimodel Inference: A Practical Information-Theoretic ApproachThe Journal of Wildlife Management, 2003
- rtREV: An Amino Acid Substitution Matrix for Inference of Retrovirus and Reverse Transcriptase PhylogenyJournal of Molecular Evolution, 2002
- A New Approach to Clustering the Amino AcidJournal of Theoretical Biology, 1996
- The rapid generation of mutation data matrices from protein sequencesBioinformatics, 1992
- Aligning amino acid sequences: Comparison of commonly used methodsJournal of Molecular Evolution, 1985
- Evolutionary trees from DNA sequences: A maximum likelihood approachJournal of Molecular Evolution, 1981