Genome-Wide Analysis of the Arabidopsis Leaf Transcriptome Reveals Interaction of Phosphate and Sugar Metabolism
- 3 November 2006
- journal article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 143 (1) , 156-171
- https://doi.org/10.1104/pp.106.090167
Abstract
Global gene expression was analyzed in Arabidopsis (Arabidopsis thaliana) by microarrays comprising 21,500 genes. Leaf segments derived from phosphorus (P)-starved and P-replenished plants were incubated with or without sucrose (Suc) to obtain tissues with contrasting combinations of P and carbohydrate levels. Transcript profiling revealed the influence of the two factors individually and the interactions between P- and sugar-dependent gene regulation. A large number of gene transcripts changed more than 2-fold: In response to P starvation, 171 genes were induced and 16 repressed, whereas Suc incubation resulted in 337 induced and 307 repressed genes. A number of new candidate genes involved in P acquisition were discovered. In addition, several putative transcription factors and signaling proteins of P sensing were disclosed. Several genes previously identified to be sugar responsive were also regulated by P starvation and known P-responsive genes were sugar inducible. Nearly 150 genes were synergistically or antagonistically regulated by the two factors. These genes exhibit more prominent or contrasting regulation in response to Suc and P in combination than expected from the effect of the two factors individually. The genes exhibiting interactions form three main clusters with different response patterns and functionality of genes. One cluster (cluster 1) most likely represents a regulatory program to support increased growth and development when both P and carbohydrates are ample. Another cluster (cluster 3) represents genes induced to alleviate P starvation and these are further induced by carbohydrate accumulation. Thus, interactions between P and Suc reveal two different signaling programs and novel interactions in gene regulation in response to environmental factors. cis-Regulatory elements were analyzed for each factor and for interaction clusters. PHR1 binding sites were more frequent in promoters of P-regulated genes as compared to the entire Arabidopsis genome, and E2F and PHR1 binding sites were more frequent in interaction clusters 1 and 3, respectively.Keywords
This publication has 67 references indexed in Scilit:
- SUGAR SENSING AND SIGNALING IN PLANTS: Conserved and Novel MechanismsAnnual Review of Plant Biology, 2006
- Identification of sugar-modulated genes and evidence for in vivo sugar sensing in ArabidopsisJournal of Plant Research, 2006
- Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvationThe Plant Journal, 2006
- Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in ArabidopsisPlant Physiology, 2005
- A Genome-Wide Analysis of the Effects of Sucrose on Gene Expression in Arabidopsis Seedlings under AnoxiaPlant Physiology, 2005
- Global Transcription Profiling Reveals Multiple Sugar Signal Transduction Mechanisms in Arabidopsis[W]Plant Cell, 2004
- Structure and Expression Profile of the Arabidopsis PHO1 Gene Family Indicates a Broad Role in Inorganic Phosphate HomeostasisPlant Physiology, 2004
- Identification and Characterization of the Arabidopsis PHO1 Gene Involved in Phosphate Loading to the XylemPlant Cell, 2002
- Ethylene and plant responses to nutritional stressPhysiologia Plantarum, 1997
- Carbohydrate metabolism during fruit development in sweet pepper (Capsicum annuum) plantsPhysiologia Plantarum, 1991