Interaction Energies and Transport Coefficients of Li+H and O+H Gas Mixtures at High Temperatures

Abstract
Accurate potential energy curves for the X 1Σg+, A 1Σu+, B 1Πu, and C 1Πu states of the Li2 molecule are calculated from observed spectroscopic data by the method of Rydberg—Klein—Rees (RKR), and compared with previous quantum‐mechanical calculations, Long‐range attractive potentials are estimated by extrapolation of functions fitted to the RKR ground‐state curves of Li2, LiH, and OH. From these, the repulsive potentials derivable from interacting ground‐state atoms are estimated semiempirically. Collision integrals are computed from the potentials, and transport coefficients of the gaseous systems Li+Li, Li+H, and O+H are calculated for temperatures of 1000° to 10 000°K. A surprising result is the extraordinarily large values of the collision inregrals for Li+Li (and Li+H) interactions, which result in unexpectedly small values of diffusion coefficient, viscosity, and thermal conductivity. For traces of Li in Li+H mixtures at low temperature, the thermal diffusion factor is very large. Various approximate formulas for viscosity and thermal conductivity of mixtures are seen to give poor agreement with exact calculations for the systems considered.

This publication has 35 references indexed in Scilit: