Abstract
We develop a finite-temperature perturbation theory for quasi-one-dimensional quantum spin systems, in the manner suggested by H.J. Schulz (1996) and use this formalism to study their dynamical response. The corrections to the random-phase approximation formula for the dynamical magnetic susceptibility obtained with this method involve multi-point correlation functions of the one-dimensional theory on which the random-phase approximation expansion is built. This ``anisotropic'' perturbation theory takes the form of a systematic high-temperature expansion. This formalism is first applied to the estimation of the N\'eel temperature of S=1/2 cubic lattice Heisenberg antiferromagnets. It is then applied to the compound Cs$_2$CuCl$_4$, a frustrated S=1/2 antiferromagnet with a Dzyaloshinskii-Moriya anisotropy. Using the next leading order to the random-phase approximation, we determine the improved values for the critical temperature and incommensurability. Despite the non-universal character of these quantities, the calculated values are different by less than a few percent from the experimental values for both compounds.

This publication has 0 references indexed in Scilit: