Lightweight network support for scalable end-to-end services

Abstract
Some end-to-end network services benefit greatly from network support in terms of utility and scalability. However, when such support is provided through service-specific mechanisms, the proliferation of one-off solutions tend to decrease the robustness of the network over time. Programmable routers, on the other hand, offer generic support for a variety of end-to-end services, but face a different set of challenges with respect to performance, scalability, security, and robustness. Ideally, router-based support for end-to-end services should exhibit the kind of generality, simplicity, scalability, and performance that made the Internet Protocol (IP) so successful. In this paper we present a router-based building block called ephemeral state processing (ESP), which is designed to have IP-like characteristics. ESP allows packets to create and manipulate small amounts of temporary state at routers via short, predefined computations. We discuss the issues involved in the design of such a service and describe three broad classes of problems for which ESP enables robust solutions. We also present performance measurements from a network-processor-based implementation.

This publication has 22 references indexed in Scilit: