Abstract
Cues that predict aversive outcomes often produce marked inhibitions of behavior known as freezing, but it is unknown exactly what neural pathways cause this inhibition. The amygdala and bed nucleus of the stria terminalis, along with their projections to the periaqueductal gray, are strongly implicated in freezing, but it is not known how these structures inhibit motor output. The median raphe nucleus (MRN), which contains a major population of serotonin neurons, has also been implicated in freezing, but the serotonin neurons themselves do not seem to be involved, leaving it uncertain which neurons in this area promote freezing. Our recent work suggests that GABAergic neurons just lateral to the MRN, but not within the MRN, regulate freezing via projections to midbrain dopamine neurons. Because freezing pathways may control a variety of other passive aversive behaviors, their elucidation may help understand the mechanisms of addictions and compulsions, which involve a failure of aversive outcomes to inhibit behavior. J. Comp. Neurol. 493:111–114, 2005.