Exploring sequence constraints on an interhelical turn using in vivo selection for catalytic activity

Abstract
The role of interhelical turns in determining protein structure has been investigated previously in relatively simple four-helix-bundle proteins using combinatorial mutagenesis coupled with screening for functional variants. To assess the tolerance to sequence substitution of a short, interhelical turn in a larger, more complicated protein, we have exploited a more sensitive in vivo selection for catalytic activity. Randomization of three solvent-exposed turn residues in Escherichia coli chorismate mutase (Ala65, His66, and His67), followed by selection, indicated that > 63% of tripeptides, including some with significantly altered backbone conformations, can functionally replace the native sequence. The increased sensitivity of the catalytic assay allowed optimal sequences to be distinguished from less appropriate ones, revealing a statistically significant preference for hydrophilic residues in solvent-exposed positions. It also enabled investigation of the extent to which either secondary structure or tertiary interactions influence substitution patterns. Randomization of an α-helical residue (Lys64), together with the adjacent solvent-exposed tripeptide, Ala65-His66-His67, showed that the secondary structure at position 64 does not limit the range of side chains allowed at this site. In contrast, randomization of a buried turn residue (Leu68), together with the same tripeptide, revealed an extremely strict requirement for hydrophobic aliphatic amino acids at this position. The strong constraint imposed by the tertiary interaction, in contrast to the weak influence of secondary structure, has important implications for protein design.