Spherical Geometries and Multigroups

Abstract
1. Introduction. The notion spherical geometry is suggested by the familiar geometry of the Euclidean 2-sphere in which the role of path is played by “arc of great circle”. The first postulational treatment of the subject seems to be that of Halsted [10] for the two-dimensional case. Kline [11] under the name double elliptic geometry, gave a greatly simplified foundation for the three-dimensional case based on the primitive notions point and order. Halsted and Kline study not merely descriptive (that is positional, non-metrical) properties of figures but also introduce metrical notions by postulating or defining congruence. Kline includes a continuity postulate designed to yield real spherical geometry.

This publication has 0 references indexed in Scilit: