Suppression of Bragg scattering by collective interference of spatially ordered atoms with a high-Q cavity mode

Abstract
When N driven atoms emit in phase into a high-Q cavity mode, the intracavity field generated by collective scattering interferes destructively with the pump driving the atoms. Hence atomic fluorescence is suppressed and cavity loss becomes the dominant decay channel for the whole ensemble. Microscopically 3D light-intensity minima are formed in the vicinity of the atoms that prevent atomic excitation and form a regular lattice. The effect gets more pronounced for large atom numbers, when the sum of the atomic decay rates exceeds the rate of cavity losses and one would expect the opposite behaviour. These results provide new insight into recent experiments on collective atomic dynamics in cavities.

This publication has 0 references indexed in Scilit: