Regulation of cell volume in separated renal tubules incubated in hypotonic medium

Abstract
The regulation of cell volume was studied in separated renal tubules (SRT) whose basement membrane had been removed by collagenase. Regulation occurred when SRT were immersed in a hypotonic medium, the increase in cellular water content being half that expected in the absence of regulation. Regulation was immediate, with no initial swelling, and was accompanied by a loss of NaCl, with no change in cellular K. This regulation was eliminated by 10(-3) M ouabain. We conclude that: 1) Cell volume regulation which occurs in a hypotonic medium is due to an immediate loss of NaCl. 2) Loss of NaCl might be due to blocking of the net passive NaCl entry into the cells resulting from the drop in the transmembrane NaCl electrochemical gradient. The high membrane sodium permeability, probably located on the luminal side of the tubular cells, might explain why regulation was instantaneous. 3) Elimination of volume regulation by ouabain suggests there is no need to assume that a ouabain-insensitive pump regulates cell volume.

This publication has 5 references indexed in Scilit: