Pharmacokinetics and metabolism of E-5-(2-[131I]iodovinyl)-2'-deoxyuridine in dogs
- 1 February 1986
- journal article
- research article
- Published by American Society for Microbiology in Antimicrobial Agents and Chemotherapy
- Vol. 29 (2) , 320-324
- https://doi.org/10.1128/aac.29.2.320
Abstract
E-5-(2-Iodovinyl)-2'-deoxyuridine (IVdU) is a potent inhibitor of herpes simplex virus type 1 replication in vitro. The selective antiviral activity of IVdU is due to preferential phosphorylation by the herpes simplex virus type 1-encoded thymidine kinase. This selective sequesteration provided the rationale for the development of radioiodinated IVdU as a potential radiopharmaceutical compound for use in noninvasive diagnosis of herpes simplex virus encephalitis. We studied the pharmacokinetics and the in vivo metabolism of [131I]IVdU in dogs. The radioactive components in plasma were characterized and quantitated by radio high-pressure liquid chromatography. During incubation with dog blood, [131I]IVdU was metabolized to the corresponding base (E)-5-(2-iodovinyl)uracil. 131I-labeled (E)-5-(2-iodovinyl)uracil accounted for 73% of the total radioactivity present in plasma after 2 h of incubation, suggesting that phosphorolysis of the nucleoside is the major degradation pathway of IVdU in blood. The in vivo studies showed that there was an initial rapid clearance of the tracer from blood, followed by a second very slow clearance phase. Evaluation of the renal excretion of the radiotracer showed that only 8% of the injected dose was excreted by kidneys over an 8-h period. IVdU was rapidly metabolized to three radioactive compounds. Two of these metabolites, the base (E)-5-(2-iodovinyl)uracil and iodide, were characterized. The radioactivity associated with these metabolites was responsible for the slow clearance phase. Our results suggest that the development of [131I]IVdU as a radiopharmaceutical compound will require measures to prevent its rapid degradation in vivo.This publication has 23 references indexed in Scilit:
- Synthesis of 131I, 125I and 82Br labelled (E)-5-(2-Halovinyl)-2′-deoxyuridinesThe International Journal of Applied Radiation and Isotopes, 1984
- Biochemical aspects of the selective antiherpes activity of nucleoside analoguesBiochemical Pharmacology, 1984
- Quantitative uptake studies of 131I-labeled (E)-5-(2-iodovinyl)-2'-deoxyuridine in herpes simplex virus-infected cells in vitroAntimicrobial Agents and Chemotherapy, 1984
- Phosphorolysis of (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) and other 5-substituted-2'-deoxyuridines by purified human thymidine phosphorylase and intact blood plateletsBiochemical Pharmacology, 1983
- Herpes Simplex Virus Encephalitis: Laboratory Evaluations and Their Diagnostic SignificanceThe Journal of Infectious Diseases, 1982
- Efficacy of (E)-5-(2-bromovinyl)-2?-deoxyuridine in the topical treatment of herpes simplex keratitisAlbrecht von Graefes Archiv für Ophthalmologie, 1981
- Comparative Efficacy of Antiherpes Drugs against Different Strains of Herpes Simplex VirusThe Journal of Infectious Diseases, 1980
- Relative potencies of different anti-herpes agents in the topical treatment of cutaneous herpes simplex virus infection of athymic nude miceAntimicrobial Agents and Chemotherapy, 1979
- Thymidylate synthetase. Catalysis of dehalogenation of 5-bromo- and 5-iodo-2'-deoxyuridylateBiochemistry, 1979
- Studies in the mouse of the pharmacology of 5-iododeoxyuridine, an analogue of thymidineBiochemical Pharmacology, 1960