Abstract
Rate constants and activation energies for selected initial rotational levels, thermally averaged over vibrational states and translational energies, are calculated for Ar+H2→Ar+H+H by the Monte Carlo quasiclassical trajectory method. The results show that activation energies for high rotational quantum numbers exceed those estimated from centrifugal barrier heights. To characterize the rotational‐level model of diatomic dissociation, we tabulate rate constants, activation energies, and other properties of dissociative collisions as functions of initial rotational quantum number j for conditions of thermal vibrational and translational degrees of freedom at 4500 K. Under equilibrium conditions, dissociation from a given j level is shown to occur primarily from the topmost v state of that j level.

This publication has 18 references indexed in Scilit: