Abstract
We consider the problem of finding the jointly optimal end-to-end communication rates, routing, power allocation and transmission scheduling for wireless networks. In particular, we focus on finding the resource allocation that achieves fair end-to-end communication rates. Using realistic models of several rate and power adaption schemes, we show how this cross-layer optimization problem can be formulated as a nonlinear mathematical program. We develop a specialized solution method, based on a nonlinear column generation technique, and prove that it converges to the globally optimal solution. We present computational results from a large set of networks and discuss the insight that can be gained about the influence of power control, spatial reuse, routing strategies and variable transmission rates on network performance.

This publication has 20 references indexed in Scilit: