Abstract
An algorithm is developed for the simultaneous optimization of several response functions that depend on the same set of controllable variables and are adequately represented by polynomial regression models of the same degree. The data are first checked for linear dependencies among the responses. If such dependencies exist, a basic set of responses among which no linear functional relationships exist is chosen and used in developing a function that measures the distance of the vector of estimated responses from the estimated “ideal” optimum. This distance function permits the user to account for the variances and covariances of the estimated responses and for the random error variation associated with the estimated ideal optimum. Suitable operating conditions for the simultaneous optimization of the responses are specified by minimizing the prescribed distance function over the experimental region. An extension of the optimization procedure to mixture experiments is also given and the method is illustrat...

This publication has 0 references indexed in Scilit: