Fast airborne aerosol size and chemistry measurements with the high resolution aerosol mass spectrometer during the MILAGRO Campaign
Preprint
- 20 December 2007
- preprint
- Published by Copernicus GmbH in EGUsphere
- Vol. 8 (14) , 4027-4048
- https://doi.org/10.5194/acpd-7-18269-2007
Abstract
The concentration, size, and composition of non-refractory submicron aerosol (NR-PM1) was measured over Mexico City and central Mexico with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) onboard the NSF/NCAR C-130 aircraft as part of the MILAGRO field campaign. This was the first aircraft deployment of the HR-ToF-AMS. During the campaign the instrument performed very well, and provided 12 s data. The aerosol mass from the AMS correlates strongly with other aerosol measurements on board the aircraft. Organic aerosol (OA) species dominate the NR-PM1 mass. OA correlates strongly with CO and HCN indicating that pollution (mostly secondary OA, SOA) and biomass burning (BB) are the main OA sources. The OA to CO ratio indicates a typical value for aged air of around 80 μg m−3 (STP) ppm−1. This is within the range observed in outflow from the Northeastern US, which could be due to a compensating effect between higher BB but lower biogenic VOC emissions during this study. The O/C atomic ratio for OA is calculated from the HR mass spectra and shows a clear increase with photochemical age, as SOA forms rapidly and quickly overwhelms primary urban OA, consistent with Volkamer et al. (2006) and Kleinman et al. (2008). The stability of the OA/CO while O/C increases with photochemical age implies a net loss of carbon from the OA. BB OA is marked by signals at m/z 60 and 73, and also by a signal enhancement at large m/z indicative of larger molecules or more resistance to fragmentation. The main inorganic components show different spatial patterns and size distributions. Sulfate is regional in nature with clear volcanic and petrochemical/power plant sources, while the urban area is not a major regional source for this species. Nitrate is enhanced significantly in the urban area and immediate outflow, and is strongly correlated with CO indicating a strong urban source. The importance of nitrate decreases with distance from the city likely due to evaporation. BB does not appear to be a strong source of nitrate despite its high emissions of nitrogen oxides, presumably due to low ammonia emissions. NR-chloride often correlates with HCN indicating a fire source, although other sources likely contribute as well. This is the first aircraft study of the regional evolution of aerosol chemistry from a tropical megacity.Keywords
All Related Versions
- Published version: Atmospheric Chemistry and Physics, 8 (14), 4027.
This publication has 63 references indexed in Scilit:
- O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass SpectrometryEnvironmental Science & Technology, 2008
- Design and Operation of a Pressure-Controlled Inlet for Airborne Sampling with an Aerodynamic Aerosol LensAerosol Science and Technology, 2008
- Identification of the Mass Spectral Signature of Organic Aerosols from Wood Burning EmissionsEnvironmental Science & Technology, 2007
- Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometerMass Spectrometry Reviews, 2007
- A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamberEGUsphere, 2006
- Characterization of urban and rural organic particulate in the Lower Fraser Valley using two Aerodyne Aerosol Mass SpectrometersAtmospheric Environment, 2004
- Impact of wildfires on the air quality of Mexico City, 1992–1999Environmental Pollution, 2002
- Determining Aerosol Radiative Properties Using the TSI 3563 Integrating NephelometerAerosol Science and Technology, 1998
- Performance Characteristics of a High-Sensitivity, Three-Wavelength, Total Scatter/Backscatter NephelometerJournal of Atmospheric and Oceanic Technology, 1996
- Nitrogen deposition in California forests: A reviewEnvironmental Pollution, 1996