A 45 bp inverted repeat is required for cell cycle regulation of the Escherichia coli nrd operon

Abstract
Expression of β‐galactosidase from a nrd–lacZ fusion was used to determine the role in nrd regulation of an inverted sequence upstream of the promoter. Removal or replacement of a 45 bp inverted repeat with an altered sequence including a 48 bp perfect inverted repeat resulted in a mutant phenotype that was low in nrd expression in an exponentially growing culture and that did not increase during DNA synthesis inhibition. Changing the 22 bp in the upstream half of the inverted repeat resulted in the same phenotype, whereas changing the 22 bp in the downstream half of the inverted repeat decreased nrd expression to a lesser extent in an exponentially growing culture and had only a smaller effect on nrd expression during DNA synthesis inhibition. As other mutants with the phenotype of the upstream inverted repeat mutant were found to lack cell cycle regulation, expression of nrdlac mRNA produced from a plasmid with this mutation in the nrd–lacZ fusion gene was compared with nrd mRNA produced from the chromosomal nrd gene in a synchronized culture. The results indicated that the upstream half of the nrd inverted repeat contains a cis‐acting element essential for nrd cell cycle regulation.