Abstract
It is well known that Wald's Fundamental Identity (F.I.) in sequential analysis can be used to derive approximate (and, sometimes exact) results in most situations wherein we have essentially a random walk phenomenon. Bartlett [2] used it for the gambler's ruin problem and also for a simple renewal problem. Phatarfod [18] used it for a problem in dam theory. It is the purpose of this paper to show how a generalization of the Fundamental Identity to Markovian variables, (Phatarfod [19]) can be used to derive approximate results in some problems in dam and renewal theories where the random variables involved have Markovian dependence. The reason for considering both the theories together is that the models usually proposed for both the theories — input distribution for dam theory, and lifedistribution for renewal theory — are similar, and only a slight modification (to account for the ‘release rules’ in dam theory, plus the fact that we have two barriers) is necessary to derive results in dam theory from those of renewal theory.

This publication has 13 references indexed in Scilit: