Time-dependent helical waves in rotating pipe flow

Abstract
The Navier-Stokes equations for flow in a rotating circular pipe are solved numerically, subject to imposing helical symmetry on the velocity fieldv=v(r, θ + αz,t). The helical symmetry is exploited by writing the equations of motion in helical variables, reducing the problem to two dimensions. A limited study of the pipe flow is made in the parameter space of the wavenumber α, and the axial and azimuthal Reynolds numbers. The steadily rotating waves previously studied by Toplosky & Akylas (1988), which arise from the linear instability of the basic steady flow, are found to undergo a series of bifurcations, through periodic to aperiodic time dependence. The relevance of these results to the mechanism of laminar-turbulent transition in a stationary pipe is discussed.

This publication has 26 references indexed in Scilit: