Existence of solutions for the equations
- 1 January 2000
- journal article
- research article
- Published by Taylor & Francis in Communications in Partial Differential Equations
- Vol. 25 (5-6) , 99-110
- https://doi.org/10.1080/03605300008821540
Abstract
We introduce a concept of weak solution for a boundary value problem modelling the interactive motion of a coupled system consisting in a rigid body immersed in a viscous fluid. The fluid, and the solid are contained in a fixed open bounded set of R3. The motion of the fluid is governed by the incompresible Navier-Stokes equations and the standard conservation's laws of linear, and angular momentum rules the dynamics of the rigid body. The time variation of the fluid's domain (due to the motion of the rigid body) is not known apriori, so we deal with a free boundary value problem. Our main theorem asserts the existence of at least one weak solution for this problem. The result is global in time provided that the rigid body does not touch the boundaryKeywords
This publication has 4 references indexed in Scilit:
- Motion of a rigid body in a viscous fluidComptes Rendus de l'Académie des Sciences - Series I - Mathematics, 1999
- Existence de solutions d'un problème de couplage fluide-structure bidimensionnel instationnaireComptes Rendus de l'Académie des Sciences - Series I - Mathematics, 1998
- Chute libre d’un solide dans un fluide visqueux incompressible. existenceJapan Journal of Applied Mathematics, 1987
- Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmetMathematische Nachrichten, 1950