Nuclear quadrupole resonance detected at 30 MHz with a dc superconducting quantum interference device

Abstract
A dc superconducting quantum interference device is used as a tuned radio frequency amplifier at liquid helium temperatures to detect pulsed nuclear quadrupole resonance at ∼30 MHz. At a bath temperature of 4.2 K, a total system noise temperature of 6±1 K has been achieved, with a quality factor Q of 2500. A novel Q spoiler, consisting of a series array of Josephson tunnel junctions, reduces the ring-down time of the tuned circuit after each pulse. The minimum number of Bohr magnetons observable from a free precession signal after a single pulse is ∼2×1016 in a bandwidth of 10 kHz.