Convection and gravity waves in two layer models. I. Overstable modes driven in conducting boundary layers

Abstract
Stability analysis is formulated for a two-layer fluid model in which the upper and lower layers are convectively stable and unstable, respectively. With discontinuities in viscosity and conductivity at the interface, the exchange of stability does not generally hold and overstability is possible. A detailed analytical treatment is presented for the case of small viscosity and conductivity in which viscous and conducting boundary layers are formed at the interface. The usual damping effect due to the energy dissipation by viscosity and thermal conductivity exists irrespective of whether the mode is the convection or the gravity wave, but, for larger horizontal wave lengths, the effect of the boundary layer can become more important. The jump in the thermal conductivity in the boundary layer can give rise to overstability of the gravity wave in agreement with Souffrin and Spiegel (1967). The jump in the viscosity provides a self-catalytic action for the unstable flow if the viscosity is assumed to be the nonlinear turbulent viscosity due to the motion itself. The effect, however, is not strong enough to overcome the usual viscous damping.

This publication has 6 references indexed in Scilit: