Abstract
Behavior is a manifestation of temporally and spatially defined neuronal activities. To understand how behavior is controlled by the nervous system, it is important to identify the neuronal substrates responsible for these activities, and to elucidate how they are integrated into a functional circuit. I introduce a novel and general method to conditionally perturb anatomically defined neurons in intactDrosophila. In this method, a temperature‐sensitive allele ofshibire(shits1) is overexpressed in neuronal subsets using theGAL4/UASsystem. Because theshigene product is essential for synaptic vesicle recycling, andshits1is semidominant, a simple temperature shift should lead to fast and reversible effects on synaptic transmission ofshits1expressing neurons. Whenshits1expression was directed to cholinergic neurons, adult flies showed a dramatic response to the restrictive temperature, becoming motionless within 2 min at 30°C. This temperature‐induced paralysis was reversible. After being shifted back to the permissive temperature, they readily regained their activity and started to walk in 1 min. Whenshits1was expressed in photoreceptor cells, adults and larvae exhibited temperature‐dependent blindness. These observations show that theGAL4/UASsystem can be used to expressshits1in a specific subset of neurons to cause temperature‐dependent changes in behavior. Because this method allows perturbation of the neuronal activities rapidly and reversibly in a spatially and temporally restricted manner, it will be useful to study the functional significance of particular neuronal subsets in the behavior of intact animals. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 81–92, 2001