Thermal fluctuations in a pair of magnetostatically coupled particles

Abstract
The influence of the thermal agitation on the switching dynamics for a pair of identical uniaxially anisotropic dipoles is studied for the case of the applied field parallel to the bond direction and the common anisotropy axis. A set of Langevin equations was derived from the micromagnetic energy expression and solved numerically. The switching behavior resembles a random walk over the energy barrier arising from the anisotropy of the system. The relaxation time is computed as a function of temperature, applied field, and coupling strength. The temperature dependence of the maximum energy of the fluctuations provides a method of evaluating the energy barrier of reversal. The thermal agitation is shown to reduce the symmetry of the ‘‘fanning’’ reversal mode.

This publication has 5 references indexed in Scilit: