Stability of the quantum spin Hall effect: effects of interactions, disorder, and Z_2 topology
Preprint
- 11 August 2005
Abstract
The stability to interactions and disorder of the quantum spin Hall effect (QSHE) proposed for time-reversal-invariant 2D systems is discussed. The QSHE requires an energy gap in the bulk and gapless edge modes that conduct spin-up and spin-down excitations in opposite directions. When the number of Kramers pairs of edge modes is odd, certain one-particle scattering processes are forbidden due to a topological $\mathbb{Z}_2$ index. We show that in a many-body description, there are other scattering processes that can localize the edge modes and destroy the QSHE: the region of stability for both classes of models (even or odd number of Kramers pairs) is obtained explicitly in the chiral boson theory. For a single Kramers pair the QSHE is stable to weak interactions and disorder, while for two Kramers pairs it is not; however, the two-pair case can be stabilized by {\it either} finite attractive or repulsive interactions. For the simplest case of a single pair of edge modes, it is shown that changing the screening length in an edge with screened Coulomb interactions can be used to drive a phase transition between the QSHE state and the ordinary insulator.
Keywords
All Related Versions
- Version 1, 2005-08-11, ArXiv
- Published version: Physical Review B, 73 (4), 045322.
This publication has 0 references indexed in Scilit: